Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
1.
J Nucl Med ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38782458

RESUMEN

The widespread deposition of amyloid-ß (Aß) plaques in late-stage Alzheimer disease is well defined and confirmed by in vivo PET. However, there are discrepancies between which regions contribute to the earliest topographic Aß deposition within the neocortex. Methods: This study investigated Aß signals in the perithreshold SUV ratio range using Pittsburgh compound B (PiB) PET in a population-based study cross-sectionally and longitudinally. PiB PET scans from 1,088 participants determined the early patterns of PiB loading in the neocortex. Results: Early-stage Aß loading is seen first in the temporal, cingulate, and occipital regions. Regional early deposition patterns are similar in both apolipoprotein ε4 carriers and noncarriers. Clustering analysis shows groups with different patterns of early amyloid deposition. Conclusion: These findings of initial Aß deposition patterns may be of significance for diagnostics and understanding the development of Alzheimer disease phenotypes.

2.
NPJ Parkinsons Dis ; 10(1): 76, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570511

RESUMEN

Dementia with Lewy bodies (DLB) is a neurodegenerative condition often co-occurring with Alzheimer's disease (AD) pathology. Characterizing white matter tissue microstructure using Neurite Orientation Dispersion and Density Imaging (NODDI) may help elucidate the biological underpinnings of white matter injury in individuals with DLB. In this study, diffusion tensor imaging (DTI) and NODDI metrics were compared in 45 patients within the dementia with Lewy bodies spectrum (mild cognitive impairment with Lewy bodies (n = 13) and probable dementia with Lewy bodies (n = 32)) against 45 matched controls using conditional logistic models. We evaluated the associations of tau and amyloid-ß with DTI and NODDI parameters and examined the correlations of AD-related white matter injury with Clinical Dementia Rating (CDR). Structural equation models (SEM) explored relationships among age, APOE ε4, amyloid-ß, tau, and white matter injury. The DLB spectrum group exhibited widespread white matter abnormalities, including reduced fractional anisotropy, increased mean diffusivity, and decreased neurite density index. Tau was significantly associated with limbic and temporal white matter injury, which was, in turn, associated with worse CDR. SEM revealed that amyloid-ß exerted indirect effects on white matter injury through tau. We observed widespread disruptions in white matter tracts in DLB that were not attributed to AD pathologies, likely due to α-synuclein-related injury. However, a fraction of the white matter injury could be attributed to AD pathology. Our findings underscore the impact of AD pathology on white matter integrity in DLB and highlight the utility of NODDI in elucidating the biological basis of white matter injury in DLB.

3.
J Neurol ; 2024 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-38583104

RESUMEN

BACKGROUND AND OBJECTIVES: Nonfluent variant primary progressive aphasia (nfvPPA) and primary progressive apraxia of speech (PPAOS) can be precursors to corticobasal syndrome (CBS). Details on their progression remain unclear. We aimed to examine the clinical and neuroimaging evolution of nfvPPA and PPAOS into CBS. METHODS: We conducted a retrospective longitudinal study in 140 nfvPPA or PPAOS patients and applied the consensus criteria for possible and probable CBS for every visit, evaluating limb rigidity, akinesia, limb dystonia, myoclonus, ideomotor apraxia, alien limb phenomenon, and nonverbal oral apraxia (NVOA). Given the association of NVOA with AOS, we also modified the CBS criteria by excluding NVOA and assigned every patient to either a progressors or non-progressors group. We evaluated the frequency of every CBS feature by year from disease onset, and assessed gray and white matter volume loss using SPM12. RESULTS: Asymmetric akinesia, NVOA, and limb apraxia were the most common CBS features that developed; while limb dystonia, myoclonus, and alien limb were rare. Eighty-two patients progressed to possible CBS; only four to probable CBS. nfvPPA and PPAOS had a similar proportion of progressors, although nfvPPA progressed to CBS earlier (p-value = 0.046), driven by an early appearance of limb apraxia (p-value = 0.0041). The non-progressors and progressors both showed premotor/motor cortex involvement at baseline, with spread into prefrontal cortex over time. DISCUSSION: An important proportion of patients with nfvPPA and PPAOS progress to possible CBS, while they rarely develop features of probable CBS even after long follow-up.

4.
Brain Commun ; 6(2): fcae113, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38660629

RESUMEN

Progressive supranuclear palsy is a neurodegenerative disease characterized by the deposition of four-repeat tau in neuronal and glial lesions in the brainstem, cerebellar, subcortical and cortical brain regions. There are varying clinical presentations of progressive supranuclear palsy with different neuroimaging signatures, presumed to be due to different topographical distributions and burden of tau. The classic Richardson syndrome presentation is considered a subcortical variant, whilst progressive supranuclear palsy with predominant speech and language impairment is considered a cortical variant, although the pathological underpinnings of these variants are unclear. In this case-control study, we aimed to determine whether patterns of regional tau pathology differed between these variants and whether tau burden correlated with neuroimaging. Thirty-three neuropathologically confirmed progressive supranuclear palsy patients with either the Richardson syndrome (n = 17) or speech/language (n = 16) variant and ante-mortem magnetic resonance imaging were included. Tau lesion burden was semi-quantitatively graded in cerebellar, brainstem, subcortical and cortical regions and combined to form neuronal and glial tau scores. Regional magnetic resonance imaging volumes were converted to Z-scores using 33 age- and sex-matched controls. Diffusion tensor imaging metrics, including fractional anisotropy and mean diffusivity, were calculated. Tau burden and neuroimaging metrics were compared between groups and correlated using linear regression models. Neuronal and glial tau burden were higher in motor and superior frontal cortices in the speech/language variant. In the subcortical and brainstem regions, only the glial tau burden differed, with a higher burden in globus pallidus, subthalamic nucleus, substantia nigra and red nucleus in Richardson's syndrome. No differences were observed in the cerebellar dentate and striatum. Greater volume loss was observed in the motor cortex in the speech/language variant and in the subthalamic nucleus, red nucleus and midbrain in Richardson's syndrome. Fractional anisotropy was lower in the midbrain and superior cerebellar peduncle in Richardson's syndrome. Mean diffusivity was greater in the superior frontal cortex in the speech/language variant and midbrain in Richardson's syndrome. Neuronal tau burden showed associations with volume loss, lower fractional anisotropy and higher mean diffusivity in the superior frontal cortex, although these findings did not survive correction for multiple comparisons. Results suggest that a shift in the distribution of tau, particularly neuronal tau, within the progressive supranuclear palsy network of regions is driving different clinical presentations in progressive supranuclear palsy. The possibility of different disease epicentres in these clinical variants has potential implications for the use of imaging biomarkers in progressive supranuclear palsy.

5.
Brain Commun ; 6(2): fcae097, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38572268

RESUMEN

Two variants of semantic dementia are recognized based on the laterality of temporal lobe involvement: a left-predominant variant associated with verbal knowledge impairment and a right-predominant variant associated with behavioural changes and non-verbal knowledge loss. This cross-sectional clinicoradiologic study aimed to assess whole hippocampal, subregion, and/or subfield volume loss in semantic dementia versus controls and across its variants. Thirty-five semantic dementia participants and 15 controls from the Neurodegenerative Research Group at Mayo Clinic who had completed 3.0-T volumetric magnetic resonance imaging and 18F-fluorodeoxyglucose-positron emission tomography were included. Classification as left-predominant (n = 25) or right-predominant (n = 10) variant was based on temporal lobe hypometabolism. Volumes of hippocampal subregions (head, body, and tail) and subfields (parasubiculum, presubiculum, subiculum, cornu ammonis 1, cornu ammonis 3, cornu ammonis 4, dentate gyrus, molecular layer, hippocampal-amygdaloid transition area, and fimbria) were obtained using FreeSurfer 7. Subfield volumes were measured separately from head and body subregions. We fit linear mixed-effects models using log-transformed whole hippocampal/subregion/subfield volumes as dependent variables; age, sex, total intracranial volume, hemisphere and a group-by-hemisphere interaction as fixed effects; and subregion/subfield nested within hemisphere as a random effect. Significant results (P < 0.05) are hereby reported. At the whole hippocampal level, the dominant (predominantly involved) hemisphere of both variants showed 23-27% smaller volumes than controls. The non-dominant (less involved) hemisphere of the right-predominant variant also showed volume loss versus controls and the left-predominant variant. At the subregional level, both variants showed 17-28% smaller dominant hemisphere head, body, and tail than controls, with the right-predominant variant also showing 8-12% smaller non-dominant hemisphere head than controls and left-predominant variant. At the subfield level, the left-predominant variant showed 12-36% smaller volumes across all dominant hemisphere subfields and 14-15% smaller non-dominant hemisphere parasubiculum, presubiculum (head and body), subiculum (head) and hippocampal-amygdaloid transition area than controls. The right-predominant variant showed 16-49% smaller volumes across all dominant hemisphere subfields and 14-22% smaller parasubiculum, presubiculum, subiculum, cornu ammonis 3, hippocampal-amygdaloid transition area (all from the head) and fimbria of non-dominant hemisphere versus controls. Comparison of dominant hemispheres showed 16-29% smaller volumes of the parasubiculum, presubiculum (head) and fimbria in the right-predominant than left-predominant variant; comparison of non-dominant hemispheres showed 12-15% smaller cornu ammonis 3, cornu ammonis 4, dentate gyrus, hippocampal-amygdaloid transition area (all from the head) and cornu ammonis 1, cornu ammonis 3 and cornu ammonis 4 (all from the body) in the right-predominant variant. All hippocampal subregion/subfield volumes are affected in semantic dementia, although some are more affected in both dominant and non-dominant hemispheres of the right-predominant than the left-predominant variant by the time of presentation. Involvement of hippocampal structures is apparently more subregion dependent than subfield dependent, indicating possible superiority of subregion volumes as disease biomarkers.

6.
World Neurosurg ; 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38604534

RESUMEN

BACKGROUND: Many patients with idiopathic normal pressure hydrocephalus (iNPH) have medical comorbidities requiring anticoagulation that could negatively impact outcomes. This study evaluated the safety of ventriculoperitoneal shunt placement in iNPH patients on systemic anticoagulation versus those not on anticoagulation. METHODS: Patients >60 years of age with iNPH who underwent shunting between 2018 and 2022 were retrospectively reviewed. Baseline demographics, comorbidities (quantified by modified frailty index and Charlson comorbidity index), anticoagulant/antiplatelet agent use (other than aspirin), operative details, and complications were collected. Outcomes of interest were the occurrence of postoperative hemorrhage and overdrainage. RESULTS: A total of 234 patients were included in the study (mean age 75.22 ± 6.04 years; 66.7% male); 36 were on anticoagulation/antiplatelet therapy (excluding aspirin). This included 6 on Warfarin, 19 on direct Xa inhibitors, 10 on Clopidogrel, and 1 on both Clopidogrel and Warfarin. Notably, 70% of patients (164/234) used aspirin alone or combined with anticoagulation or clopidogrel. Baseline modified frailty index was similar between groups, but those on anticoagulant/antiplatelet therapy had a higher mean Charlson comorbidity index (2.67 ± 1.87 vs. 1.75 ± 1.84; P = 0.001). Patients on anticoagulants were more likely to experience tract hemorrhage (11.1 vs. 2.5%; P = 0.03), with no significant difference in the rates of intraventricular hemorrhage or overdrainage-related subdural fluid collection. CONCLUSIONS: Anticoagulant and antiplatelet agents are common in the iNPH population, and patients on these agents experienced higher rates of tract hemorrhage following ventriculoperitoneal shunt placement; however, overall hemorrhagic complication rates were similar.

7.
Artículo en Inglés | MEDLINE | ID: mdl-38514176

RESUMEN

BACKGROUND: Primary progressive aphasia (PPA) defines a group of neurodegenerative disorders characterised by language decline. Three PPA variants correlate with distinct underlying pathologies: semantic variant PPA (svPPA) with transactive response DNA-binding protein of 43 kD (TDP-43) proteinopathy, agrammatic variant PPA (agPPA) with tau deposition and logopenic variant PPA (lvPPA) with Alzheimer's disease (AD). Our objectives were to differentiate PPA variants using clinical and neuroimaging features, assess progression and evaluate structural MRI and a novel 18-F fluorodeoxyglucose positron emission tomography (FDG-PET) image decomposition machine learning algorithm for neuropathology prediction. METHODS: We analysed 82 autopsied patients diagnosed with PPA from 1998 to 2022. Clinical histories, language characteristics, neuropsychological results and brain imaging were reviewed. A machine learning framework using a k-nearest neighbours classifier assessed FDG-PET scans from 45 patients compared with a large reference database. RESULTS: PPA variant distribution: 35 lvPPA (80% AD), 28 agPPA (89% tauopathy) and 18 svPPA (72% frontotemporal lobar degeneration-TAR DNA-binding protein (FTLD-TDP)). Apraxia of speech was associated with 4R-tauopathy in agPPA, while pure agrammatic PPA without apraxia was linked to 3R-tauopathy. Longitudinal data revealed language dysfunction remained the predominant deficit for patients with lvPPA, agPPA evolved to corticobasal or progressive supranuclear palsy syndrome (64%) and svPPA progressed to behavioural variant frontotemporal dementia (44%). agPPA-4R-tauopathy exhibited limited pre-supplementary motor area atrophy, lvPPA-AD displayed temporal atrophy extending to the superior temporal sulcus and svPPA-FTLD-TDP had severe temporal pole atrophy. The FDG-PET-based machine learning algorithm accurately predicted clinical diagnoses and underlying pathologies. CONCLUSIONS: Distinguishing 3R-taupathy and 4R-tauopathy in agPPA may rely on apraxia of speech presence. Additional linguistic and clinical features can aid neuropathology prediction. Our data-driven brain metabolism decomposition approach effectively predicts underlying neuropathology.

8.
Acta Neuropathol ; 147(1): 54, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38472443

RESUMEN

Rare and common GBA variants are risk factors for both Parkinson's disease (PD) and dementia with Lewy bodies (DLB). However, the degree to which GBA variants are associated with neuropathological features in Lewy body disease (LBD) is unknown. Herein, we assessed 943 LBD cases and examined associations of 15 different neuropathological outcomes with common and rare GBA variants. Neuropathological outcomes included LBD subtype, presence of a high likelihood of clinical DLB (per consensus guidelines), LB counts in five cortical regions, tyrosine hydroxylase immunoreactivity in the dorsolateral and ventromedial putamen, ventrolateral substantia nigra neuronal loss, Braak neurofibrillary tangle (NFT) stage, Thal amyloid phase, phospho-ubiquitin (pS65-Ub) level, TDP-43 pathology, and vascular disease. Sequencing of GBA exons revealed a total of 42 different variants (4 common [MAF > 0.5%], 38 rare [MAF < 0.5%]) in our series, and 165 cases (17.5%) had a copy of the minor allele for ≥ 1 variant. In analysis of common variants, p.L483P was associated with a lower Braak NFT stage (OR = 0.10, P < 0.001). In gene-burden analysis, presence of the minor allele for any GBA variant was associated with increased odds of a high likelihood of DLB (OR = 2.00, P < 0.001), a lower Braak NFT stage (OR = 0.48, P < 0.001), a lower Thal amyloid phase (OR = 0.55, P < 0.001), and a lower pS65-Ub level (ß: -0.37, P < 0.001). Subgroup analysis revealed that GBA variants were most common in LBD cases with a combination of transitional/diffuse LBD and Braak NFT stage 0-II or Thal amyloid phase 0-1, and correspondingly that the aforementioned associations of GBA gene-burden with a decreased Braak NFT stage and Thal amyloid phase were observed only in transitional or diffuse LBD cases. Our results indicate that in LBD, GBA variants occur most frequently in cases with greater LB pathology and low AD pathology, further informing disease-risk associations of GBA in PD, PD dementia, and DLB.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad por Cuerpos de Lewy , Enfermedad de Parkinson , Humanos , Enfermedad por Cuerpos de Lewy/patología , Enfermedad de Parkinson/patología , Enfermedad de Alzheimer/patología , Sustancia Negra/patología , Ovillos Neurofibrilares/patología
9.
Brain Commun ; 6(2): fcae005, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38444909

RESUMEN

Disruption of the default mode network is a hallmark of Alzheimer's disease, which has not been extensively examined in atypical phenotypes. We investigated cross-sectional and 1-year longitudinal changes in default mode network sub-systems in the visual and language variants of Alzheimer's disease, in relation to age and tau. Sixty-one amyloid-positive Alzheimer's disease participants diagnosed with posterior cortical atrophy (n = 33) or logopenic progressive aphasia (n = 28) underwent structural MRI, resting-state functional MRI and [18F]flortaucipir PET. One-hundred and twenty-two amyloid-negative cognitively unimpaired individuals and 60 amyloid-positive individuals diagnosed with amnestic Alzheimer's disease were included as controls and as a comparison group, respectively, and had structural and resting-state functional MRI. Forty-one atypical Alzheimer's disease participants, 26 amnestic Alzheimer's disease participants and 40 cognitively unimpaired individuals had one follow-up functional MRI ∼1-2 years after the baseline scan. Default mode network connectivity was calculated using the dual regression method for posterior, ventral, anterior ventral and anterior dorsal sub-systems derived from independent component analysis. A global measure of default mode network connectivity, the network failure quotient, was also calculated. Linear mixed-effects models and voxel-based analyses were computed for each connectivity measure. Both atypical and amnestic Alzheimer's disease participants had lower cross-sectional posterior and ventral and higher anterior dorsal connectivity and network failure quotient relative to cognitively unimpaired individuals. Age had opposite effects on connectivity in Alzheimer's disease participants and cognitively unimpaired individuals. While connectivity declined with age in cognitively unimpaired individuals, younger Alzheimer's disease participants had lower connectivity than the older ones, particularly in the ventral default mode network. Greater baseline tau-PET uptake was associated with lower ventral and anterior ventral default mode network connectivity in atypical Alzheimer's disease. Connectivity in the ventral default mode network declined over time in atypical Alzheimer's disease, particularly in older participants, with lower tau burden. Voxel-based analyses validated the findings of higher anterior dorsal default mode network connectivity, lower posterior and ventral default mode network connectivity and decline in ventral default mode network connectivity over time in atypical Alzheimer's disease. Visuospatial symptoms were associated with default mode network connectivity disruption. In summary, default mode connectivity disruption was similar between atypical and amnestic Alzheimer's disease variants, and discriminated Alzheimer's disease from cognitively unimpaired individuals, with decreased posterior and increased anterior connectivity and with disruption more pronounced in younger participants. The ventral default mode network declined over time in atypical Alzheimer's disease, suggesting a shift in default mode network connectivity likely related to tau pathology.

10.
Alzheimers Dement ; 20(4): 2485-2496, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38329197

RESUMEN

INTRODUCTION: Patients with dementia with Lewy bodies (DLB) may have Alzheimers disease (AD) pathology that can be detected by plasma biomarkers. Our objective was to evaluate plasma biomarkers of AD and their association with positron emission tomography (PET) biomarkers of amyloid and tau deposition in the continuum of DLB, starting from prodromal stages of the disease. METHODS: The cohort included patients with isolated rapid eye movement (REM) sleep behavior disorder (iRBD), mild cognitive impairment with Lewy bodies (MCI-LB), or DLB, with a concurrent blood draw and PET scans. RESULTS: Abnormal levels of plasma glial fibrillary acidic protein (GFAP) were found at the prodromal stage of MCI-LB in association with increased amyloid PET. Abnormal levels of plasma phosphorylated tau (p-tau)-181 and neurofilament light (NfL) were found at the DLB stage. Plasma p-tau-181 showed the highest accuracy in detecting abnormal amyloid and tau PET in patients with DLB. DISCUSSION: The range of AD co-pathology can be detected with plasma biomarkers in the DLB continuum, particularly with plasma p-tau-181 and GFAP.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Enfermedad por Cuerpos de Lewy , Trastorno de la Conducta del Sueño REM , Humanos , Enfermedad de Alzheimer/diagnóstico , Enfermedad por Cuerpos de Lewy/diagnóstico , Péptidos beta-Amiloides , Proteínas tau , Biomarcadores/metabolismo , Disfunción Cognitiva/diagnóstico
11.
Brain Behav ; 14(1): e3346, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38376044

RESUMEN

BACKGROUND: Progressive apraxia of speech (PAOS) is characterized by difficulties with motor speech programming and planning. PAOS targets gray matter (GM) and white matter (WM) microstructure that can be assessed using diffusion tensor imaging (DTI) and multishell applications, such as neurite orientation dispersion and density imaging (NODDI). In this study, we aimed to apply DTI and NODDI to add further insight into PAOS tissue microstructure. METHODS: Twenty-two PAOS patients and 26 age- and sex-matched controls, recruited by the Neurodegenerative Research Group (NRG) at Mayo Clinic, underwent diffusion MRI on 3T MRI. Brain maps of fractional anisotropy (FA) and mean diffusivity (MD) from DTI and intracellular volume fraction (ICVF) and isotropic volume fraction (IsoVF) from NODDI were generated. Global WM and GM, and specific WM tracts were identified using tractography and lobar GM regions. RESULTS: Global WM differences between PAOS and controls were greatest for ICVF, and global GM differences were greatest for MD and IsoVF. Abnormalities in key WM tracts involved in PAOS, including the body of the corpus callosum and frontal aslant tract, were identified with FA, MD, and ICVF, with excellent differentiation of PAOS from controls (area under the receiver operating characteristic curves >.90). MD and ICVF identified abnormalities in arcuate fasciculus, thalamic radiations, and corticostriatal tracts. Significant correlations were identified between an index of articulatory errors and DTI and NODDI metrics from the arcuate fasciculus, frontal aslant tract, and inferior longitudinal fasciculus. CONCLUSIONS: DTI and NODDI represent different aspects of brain tissue microstructure, increasing the number of potential biomarkers for PAOS.


Asunto(s)
Apraxias , Sustancia Blanca , Humanos , Imagen de Difusión Tensora/métodos , Neuritas , Habla , Encéfalo/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética/métodos , Sustancia Blanca/diagnóstico por imagen
12.
Neuroimage ; 286: 120509, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38184157

RESUMEN

PURPOSE: The pattern of flortaucipir tau PET uptake is topographically similar to the pattern of magnetic susceptibility in progressive supranuclear palsy (PSP); both with increased signal in subcortical structures such as the basal ganglia and midbrain, suggesting that they may be closely related. However, their relationship remains unknown since no studies have directly compared these two modalities in the same PSP cohort. We hypothesized that some flortaucipir uptake in PSP is associated with magnetic susceptibility, and hence iron deposition. The aim of this study was to evaluate the regional relationship between flortaucipir uptake and magnetic susceptibility and to examine the effects of susceptibility on flortaucipir uptake in PSP. METHODS: Fifty PSP patients and 67 cognitively normal controls were prospectively recruited and underwent three Tesla MRI and flortaucipir tau PET scans. Quantitative susceptibility maps were reconstructed from multi-echo gradient-echo MRI images. Region of interest (ROI) analysis was performed to obtain flortaucipir and susceptibility values in the subcortical regions. Relationships between flortaucipir and susceptibility signals were evaluated using partial correlation analysis in the subcortical ROIs and voxel-based analysis in the whole brain. The effects of susceptibility on flortaucipir uptake were examined by using the framework of mediation analysis. RESULTS: Both flortaucipir and susceptibility were greater in PSP compared to controls in the putamen, pallidum, subthalamic nucleus, red nucleus, and cerebellar dentate (p<0.05). The ROI-based and voxel-based analyses showed that these two signals were positively correlated in these five regions (r = 0.36-0.59, p<0.05). Mediation analysis showed that greater flortaucipir uptake was partially explained by susceptibility in the putamen, pallidum, subthalamic nucleus, and red nucleus, and fully explained in the cerebellar dentate. CONCLUSIONS: These results suggest that some of the flortaucipir uptake in subcortical regions in PSP is related to iron deposition. These findings will contribute to our understanding of the mechanisms underlying flortaucipir tau PET findings in PSP and other neurodegenerative diseases.


Asunto(s)
Parálisis Supranuclear Progresiva , Humanos , Encéfalo/metabolismo , Carbolinas , Hierro , Tomografía de Emisión de Positrones/métodos , Proteínas tau/metabolismo
13.
Brain ; 147(5): 1696-1709, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38217867

RESUMEN

Progressive apraxia of speech (PAOS) is a neurodegenerative motor-speech disorder that most commonly arises from a four-repeat tauopathy. Recent studies have established that progressive apraxia of speech is not a homogenous disease but rather there are distinct subtypes: the phonetic subtype is characterized by distorted sound substitutions, the prosodic subtype by slow and segmented speech and the mixed subtype by a combination of both but lack of predominance of either. There is some evidence that cross-sectional patterns of neurodegeneration differ across subtypes, although it is unknown whether longitudinal patterns of neurodegeneration differ. We examined longitudinal patterns of atrophy on MRI, hypometabolism on 18F-fluorodeoxyglucose-PET and tau uptake on flortaucipir-PET in a large cohort of subjects with PAOS that had been followed for many years. Ninety-one subjects with PAOS (51 phonetic, 40 prosodic) were recruited by the Neurodegenerative Research Group. Of these, 54 (27 phonetic, 27 prosodic) returned for annual follow-up, with up to seven longitudinal visits (total visits analysed = 217). Volumes, metabolism and flortaucipir uptake were measured for subcortical and cortical regions, for all scans. Bayesian hierarchical models were used to model longitudinal change across imaging modalities with PAOS subtypes being compared at baseline, 4 years from baseline, and in terms of rates of change. The phonetic group showed smaller volumes and worse metabolism in Broca's area and the striatum at baseline and after 4 years, and faster rates of change in these regions, compared with the prosodic group. There was also evidence of faster spread of hypometabolism and flortaucipir uptake into the temporal and parietal lobes in the phonetic group. In contrast, the prosodic group showed smaller cerebellar dentate, midbrain, substantia nigra and thalamus volumes at baseline and after 4 years, as well as faster rates of atrophy, than the phonetic group. Greater hypometabolism and flortaucipir uptake were also observed in the cerebellar dentate and substantia nigra in the prosodic group. Mixed findings were observed in the supplementary motor area and precentral cortex, with no clear differences observed across phonetic and prosodic groups. These findings support different patterns of disease spread in PAOS subtypes, with corticostriatal patterns in the phonetic subtype and brainstem and thalamic patterns in the prosodic subtype, providing insight into the pathophysiology and heterogeneity of PAOS.


Asunto(s)
Apraxias , Carbolinas , Tomografía de Emisión de Positrones , Humanos , Masculino , Femenino , Anciano , Apraxias/diagnóstico por imagen , Apraxias/metabolismo , Tomografía de Emisión de Positrones/métodos , Persona de Mediana Edad , Estudios Longitudinales , Imagen por Resonancia Magnética , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Atrofia/patología , Fluorodesoxiglucosa F18 , Fonética , Anciano de 80 o más Años , Proteínas tau/metabolismo
14.
Neurobiol Aging ; 134: 135-145, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38091751

RESUMEN

We assessed white matter (WM) integrity in MAPT mutation carriers (16 asymptomatic, 5 symptomatic) compared to 31 non-carrier family controls using diffusion tensor imaging (DTI) (fractional anisotropy; FA, mean diffusivity; MD) and neurite orientation dispersion and density imaging (NODDI) (neurite density index; NDI, orientation and dispersion index; ODI). Linear mixed-effects models accounting for age and family relatedness revealed alterations across DTI and NODDI metrics in all mutation carriers and in symptomatic carriers, with the most significant differences involving fronto-temporal WM tracts. Asymptomatic carriers showed higher entorhinal MD and lower cingulum FA and patterns of higher ODI mostly involving temporal areas and long association and projections fibers. Regression models between estimated time to or time from disease and DTI and NODDI metrics in key regions (amygdala, cingulum, entorhinal, inferior temporal, uncinate fasciculus) in all carriers showed increasing abnormalities with estimated time to or time from disease onset, with FA and NDI showing the strongest relationships. Neurite-based metrics, particularly ODI, appear to be particularly sensitive to early WM involvement in asymptomatic carriers.


Asunto(s)
Heterocigoto , Neuritas , Sustancia Blanca , Proteínas tau , Encéfalo/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética/métodos , Imagen de Difusión Tensora/métodos , Mutación , Sustancia Blanca/diagnóstico por imagen , Humanos , Proteínas tau/genética
15.
Cortex ; 171: 272-286, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38061209

RESUMEN

Two subtypes of progressive apraxia of speech (PAOS) have been recognized: phonetic PAOS (PAOS_ph) where speech output is dominated by distorted sound substitutions and prosodic PAOS (PAOS_pr) which is dominated by segmented speech. We investigate whether these PAOS subtypes have different white matter microstructural abnormalities measured by diffusion tensor tractography. Thirty-three patients with PAOS (21 PAOS_ph and 12 PAOS_pr) and 19 healthy controls were recruited by the Neurodegenerative Research Group (NRG) and underwent diffusion MRI. Using a whole-brain tractography approach, fractional anisotropy (FA) and mean diffusivity (MD) were extracted for cortico-cortical, cortico-subcortical, cortical-projection, and cerebello-cortical white matter tracts. A hierarchical linear model was applied to assess tract-level FA and MD across groups. Both PAOS_ph and PAOS_pr showed degeneration of cortico-cortical, cortico-subcortical, cortical-projection, and cerebello-cortical white matter tracts compared to controls. However, degeneration of the body of corpus callosum, superior thalamic radiation, and superior cerebellar peduncle was greater in PAOS_pr compared to PAOS_ph, and degeneration of the inferior segment of the superior longitudinal fasciculus (SLF) was greater in PAOS_ph compared to PAOS_pr. Worse parkinsonism correlated with greater degeneration of cortico-cortical and cortico-subcortical tracts in PAOS_ph. Apraxia of speech articulatory error score correlated with degeneration of the superior cerebellar peduncle tracts in PAOS_pr. Phonetic and prosodic PAOS involve the compromise of a similar network of tracts, although there are connectivity differences between types. Whereas clinical parameters are the current gold standard to distinguish PAOS subtypes, our results allege the use of DTI-based tractography as a supplementary method to investigate such variants.


Asunto(s)
Apraxias , Sustancia Blanca , Humanos , Imagen de Difusión Tensora/métodos , Fonética , Habla , Encéfalo/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Apraxias/diagnóstico por imagen
16.
Brain ; 147(3): 980-995, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-37804318

RESUMEN

Given the prevalence of dementia and the development of pathology-specific disease-modifying therapies, high-value biomarker strategies to inform medical decision-making are critical. In vivo tau-PET is an ideal target as a biomarker for Alzheimer's disease diagnosis and treatment outcome measure. However, tau-PET is not currently widely accessible to patients compared to other neuroimaging methods. In this study, we present a convolutional neural network (CNN) model that imputes tau-PET images from more widely available cross-modality imaging inputs. Participants (n = 1192) with brain T1-weighted MRI (T1w), fluorodeoxyglucose (FDG)-PET, amyloid-PET and tau-PET were included. We found that a CNN model can impute tau-PET images with high accuracy, the highest being for the FDG-based model followed by amyloid-PET and T1w. In testing implications of artificial intelligence-imputed tau-PET, only the FDG-based model showed a significant improvement of performance in classifying tau positivity and diagnostic groups compared to the original input data, suggesting that application of the model could enhance the utility of the metabolic images. The interpretability experiment revealed that the FDG- and T1w-based models utilized the non-local input from physically remote regions of interest to estimate the tau-PET, but this was not the case for the Pittsburgh compound B-based model. This implies that the model can learn the distinct biological relationship between FDG-PET, T1w and tau-PET from the relationship between amyloid-PET and tau-PET. Our study suggests that extending neuroimaging's use with artificial intelligence to predict protein specific pathologies has great potential to inform emerging care models.


Asunto(s)
Inteligencia Artificial , Aprendizaje Profundo , Neuroimagen , Tauopatías , Humanos , Proteínas Amiloidogénicas , Biomarcadores , Fluorodesoxiglucosa F18 , Neuroimagen/métodos , Tauopatías/diagnóstico por imagen
17.
Int J Speech Lang Pathol ; 26(2): 278-288, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37334902

RESUMEN

PURPOSE: The purpose of this study was to examine whether differences in motor speech features are related to presentations of dysphagia in progressive supranuclear palsy (PSP) given the sparsity of data examining this relationship. METHOD: Motor speech disorder (MSD) type and severity along with specific swallowing variables were analysed to obtain insights among these relationships in 73 participants with PSP. RESULT: Results revealed that most participants (93%) had dysarthria, with 19% having co-occurring apraxia of speech (AOS). Greater MSD severity was related to more severe pharyngeal phase impairments (95% CI [-0.917, -0.146], p = 0.008). While certain motor speech and swallowing scores varied minimally across participants, incremental changes in these functions were more likely to occur when specific MSD features were present. A trend for participants with spastic dysarthria and/or AOS to exhibit more severe dysphagia was observed. CONCLUSION: This study points to the need for thorough neurological evaluation, with inclusion of speech-language pathology consultation, in the standard of care for PSP. Comprehensive assessment of both motor speech and swallowing functions can inform differential diagnosis and assist patients/families facing decisions regarding modalities for communication and nutrition in the setting of neurodegenerative disease. Additional research may yield greater insights about relevant assessment and intervention considerations in PSP.


Asunto(s)
Apraxias , Trastornos de la Comunicación , Trastornos de Deglución , Enfermedades Neurodegenerativas , Parálisis Supranuclear Progresiva , Humanos , Parálisis Supranuclear Progresiva/diagnóstico , Parálisis Supranuclear Progresiva/patología , Habla , Disartria
18.
Brain ; 147(4): 1483-1496, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37831661

RESUMEN

There is a longstanding ambiguity regarding the clinical diagnosis of dementia syndromes predominantly targeting executive functions versus behaviour and personality. This is due to an incomplete understanding of the macro-scale anatomy underlying these symptomatologies, a partial overlap in clinical features and the fact that both phenotypes can emerge from the same pathology and vice versa. We collected data from a patient cohort of which 52 had dysexecutive Alzheimer's disease, 30 had behavioural variant frontotemporal dementia (bvFTD), seven met clinical criteria for bvFTD but had Alzheimer's disease pathology (behavioural Alzheimer's disease) and 28 had amnestic Alzheimer's disease. We first assessed group-wise differences in clinical and cognitive features and patterns of fluorodeoxyglucose (FDG) PET hypometabolism. We then performed a spectral decomposition of covariance between FDG-PET images to yield latent patterns of relative hypometabolism unbiased by diagnostic classification, which are referred to as 'eigenbrains'. These eigenbrains were subsequently linked to clinical and cognitive data and meta-analytic topics from a large external database of neuroimaging studies reflecting a wide range of mental functions. Finally, we performed a data-driven exploratory linear discriminant analysis to perform eigenbrain-based multiclass diagnostic predictions. Dysexecutive Alzheimer's disease and bvFTD patients were the youngest at symptom onset, followed by behavioural Alzheimer's disease, then amnestic Alzheimer's disease. Dysexecutive Alzheimer's disease patients had worse cognitive performance on nearly all cognitive domains compared with other groups, except verbal fluency which was equally impaired in dysexecutive Alzheimer's disease and bvFTD. Hypometabolism was observed in heteromodal cortices in dysexecutive Alzheimer's disease, temporo-parietal areas in amnestic Alzheimer's disease and frontotemporal areas in bvFTD and behavioural Alzheimer's disease. The unbiased spectral decomposition analysis revealed that relative hypometabolism in heteromodal cortices was associated with worse dysexecutive symptomatology and a lower likelihood of presenting with behaviour/personality problems, whereas relative hypometabolism in frontotemporal areas was associated with a higher likelihood of presenting with behaviour/personality problems but did not correlate with most cognitive measures. The linear discriminant analysis yielded an accuracy of 82.1% in predicting diagnostic category and did not misclassify any dysexecutive Alzheimer's disease patient for behavioural Alzheimer's disease and vice versa. Our results strongly suggest a double dissociation in that distinct macro-scale underpinnings underlie predominant dysexecutive versus personality/behavioural symptomatology in dementia syndromes. This has important implications for the implementation of criteria to diagnose and distinguish these diseases and supports the use of data-driven techniques to inform the classification of neurodegenerative diseases.


Asunto(s)
Enfermedad de Alzheimer , Demencia Frontotemporal , Humanos , Enfermedad de Alzheimer/patología , Fluorodesoxiglucosa F18 , Demencia Frontotemporal/patología , Función Ejecutiva , Corteza Cerebral/patología , Pruebas Neuropsicológicas
19.
Neuroimage Clin ; 41: 103559, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38147792

RESUMEN

Genetic mutations causative of frontotemporal lobar degeneration (FTLD) are highly predictive of a specific proteinopathy, but there exists substantial inter-individual variability in their patterns of network degeneration and clinical manifestations. We collected clinical and 18Fluorodeoxyglucose-positron emission tomography (FDG-PET) data from 39 patients with genetic FTLD, including 11 carrying the C9orf72 hexanucleotide expansion, 16 carrying a MAPT mutation and 12 carrying a GRN mutation. We performed a spectral covariance decomposition analysis between FDG-PET images to yield unbiased latent patterns reflective of whole brain patterns of metabolism ("eigenbrains" or EBs). We then conducted linear discriminant analyses (LDAs) to perform EB-based predictions of genetic mutation and predominant clinical phenotype (i.e., behavior/personality, language, asymptomatic). Five EBs were significant and explained 58.52 % of the covariance between FDG-PET images. EBs indicative of hypometabolism in left frontotemporal and temporo-parietal areas distinguished GRN mutation carriers from other genetic mutations and were associated with predominant language phenotypes. EBs indicative of hypometabolism in prefrontal and temporopolar areas with a right hemispheric predominance were mostly associated with predominant behavioral phenotypes and distinguished MAPT mutation carriers from other genetic mutations. The LDAs yielded accuracies of 79.5 % and 76.9 % in predicting genetic status and predominant clinical phenotype, respectively. A small number of EBs explained a high proportion of covariance in patterns of network degeneration across FTLD-related genetic mutations. These EBs contained biological information relevant to the variability in the pathophysiological and clinical aspects of genetic FTLD, and for offering valuable guidance in complex clinical decision-making, such as decisions related to genetic testing.


Asunto(s)
Demencia Frontotemporal , Degeneración Lobar Frontotemporal , Humanos , Fluorodesoxiglucosa F18 , Péptidos y Proteínas de Señalización Intercelular/genética , Progranulinas/genética , Degeneración Lobar Frontotemporal/diagnóstico por imagen , Degeneración Lobar Frontotemporal/genética , Demencia Frontotemporal/diagnóstico por imagen , Demencia Frontotemporal/genética , Tomografía de Emisión de Positrones , Mutación/genética , Fenotipo
20.
Parkinsonism Relat Disord ; 119: 105962, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38134678

RESUMEN

INTRODUCTION: Progressive supranuclear palsy (PSP) is an atypical parkinsonism caused by the intracerebral aggregation of the microtubule-associated protein tau (MAPT) which is encoded by MAPT gene. Although PSP is a sporadic disease, MAPT mutations have been reported in rare cases. METHODS: Among 190 patients with PSP who were recruited by the Neurodegenerative Research Group at Mayo Clinic during 2009-2023, we identified two patients who fulfilled diagnostic criteria for PSP-Richardson's syndrome (PSP-RS) and harbor novel MAPT mutations. To better investigate the potential effects of these mutations, we compared the clinical, and neuroimaging characteristics of these two patients to 20 randomly selected patients with PSP-RS without a MAPT mutation. RESULTS: MAPT c.1024G > A, p. Glu342Lys, and MAPT c.1217 G > A, p. Arg406Gln mutations were found in 2 men who developed PSP-RS with atypical features at the ages of 60 and 62 years, respectively. Glu342Lys mutation was associated with features resembling alpha-synucleinopathies (autonomic dysfunction, dream enactment behavior), while both mutations were associated with features suggestive of Alzheimer's disease with poorer performance on tests of episodic memory. Comparison of 18F-flortaucipir uptake between the two MAPT mutation cases with 20 patients without a mutation revealed increased signal on flortaucipir-PET in bilateral medial temporal lobe regions (amygdala, entorhinal cortices, hippocampus, parahippocampus) but not in PSP-related regions (globus pallidum, midbrain, superior frontal cortex and dentate nucleus of the cerebellum). CONCLUSION: Glu342Lys and Arg406Gln mutations appear to modify the PSP-RS phenotype by targeting the medial temporal lobe regions resulting in more memory loss and greater flortaucipir uptake.


Asunto(s)
Trastornos Parkinsonianos , Parálisis Supranuclear Progresiva , Masculino , Humanos , Parálisis Supranuclear Progresiva/diagnóstico por imagen , Parálisis Supranuclear Progresiva/genética , Proteínas tau/genética , Proteínas tau/metabolismo , Mutación/genética , Neuroimagen , Trastornos Parkinsonianos/diagnóstico por imagen , Trastornos Parkinsonianos/genética , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA